
 1

Abstract— Security is a growing field as more sensitive data is

stored digitally, and more users’ daily lives are revolving around

computers. With new vulnerabilities and leaks being discovered

constantly, there grows a population in need of verifiable and

flexible secure computing.

This project set out to specify and construct a working protype

of a device that could keep the most vulnerable targets, holding

the most valuable information or working in untrustworthy

environments safe. By taking lessons from previous exploits,

maintaining open sources, and paring down the attack surface,

AppVault could deliver just such a portable secure environment.

I. INTRODUCTION

HIS project was influenced by the growing risk associated

with many modern digital systems. While it is easier than

ever to create highly secure applications with modern software

engineering tools, the number of new vulnerabilities

discovered over the last few years is record breaking.

Figure 1: Published CVEs by year [1]

Just as security focused tooling has matured, so have

software fuzzing and reverse engineering toolkits. The harm of

these attacks’ ranges from obscure theoretical threats only to

be done in labs, to complete remote execution with a few lines

of script. Perhaps the most significant vulnerabilities

discovered in recent years have been the hardware level

vulnerabilities that exploit the speculative execution and

predictive pipelines modern processor manufacturers have

used to speed up their architectures. [2]

 While a recent push towards open source development has

led to many of these vulnerabilities being discovered,

obscuring source to hide vulnerabilities could not be more

secure. The hardware level vulnerabilities could have been

discovered more quickly had the full designs of affected x86

and ARM platforms were available to security auditors and

researchers.

II. THEORY

The designs theorized to meet the requirements set went

through many iterations informed by security literature

research. Proposals included: an emulated secure environment

that would use address space padding and homomorphic

encryption to hide execution from the operating system, a

hardened hypervisor that would isolate on a process level and

keep all RAM for its running virtual machines encrypted, an

embedded co-processor in the vein of ARM’s secure enclave,

and finally the chosen implementation of a standalone USB

connected device capable of arbitrary execution of selected

sensitive processes.

 This implementation was then further elaborated upon to

ensure maximum security at a design level. Embedding

encryption keys on the device in the vein of a hardware

security module and following design guidelines laid out for

HSMs as outlined by bodies such as NIST would allow for

long and secure AES keys to be kept away from even a

malicious host machine. Another key decision was to forego a

traditional operating system. Although highly secure, the sheer

size of the Linux kernel all but guarantees a risk of

exploitation. Instead a simple firmware layer that would

expose most POSIX interfaces would be created, using other

vetted code as a basis wherever possible. Finally, one of the

largest sources of risk in running applications stems from the

plurality of applications running. The odds of one

This article was supervised by Professor Aaron Carpenter for ENGR 5000

and 5550 (Engineering Senior Design) in the Electrical and Computer
Engineering Department at Wentworth Institute of Technology.

AppVault: A Flexible and Open Security

Companion Device

Skyelar Craver, Steven Pitts, and Collin Fraioli

Electrical and Computer Engineering Department

Wentworth Institute of Technology

Engineering Senior Design 2019

T

 2

application’s data being intercepted will increase

proportionately to the number of processes running at a given

time, as each piece of software could be introducing its own

vulnerabilities to be exploited. Thus the AppVault would only

run a single application at a time, and hold no persistent

information in between disparate programs running.

 Without an operating system, and without any persistence,

there would arise a new difficulty in exposing interfaces for

application developers. Some applications can have complex

dependency graphs and expect things to be in specific

locations. This has been an issue in application development

for a long time, and many solutions have arisen in the last few

years to accommodate this. The proposed solution would take

the application, all its dependencies, and bundle them into a

file system that is then archived and encrypted by the

AppVault’s internal key. This solution is like the relatively

popular AppImage format for Linux. The critical differences,

however, are the encryption, and the bundling of state and user

data into this format. The result is something reminiscent of

using a cartridge on an old game console, with all files and

save data in one pluggable object.

III. APPLICATION

While the full theoretical implementation outlined could not
be actualized within the narrow timeframe of the project, a

software and later hardware prototype was developed that

implemented many of the basic principles of the design.

The software implementation was made in Python to run on

a Raspberry Pi Model 3B. This demonstration would clearly

lack the open hardware requirement of the project, the small

footprint necessary to limit the attack surface, and settle for a

simulation of the desired protocols. This higher-level demo

did allow for faster iteration using the high-level language and

standard Linux environment of the Pi. This environment also

allowed for certain concepts that were too complex to write

and run well on the microcontroller board used for the

hardware implementation, such as using file system images for

program dependency and state bundling.

Figure 2: Current hardware prototype of AppVault.

Left: Altera DE0-CV development board

Right: SiFive Hifive-Rev B development board

 The hardware accurate implementation utilized consumer

development boards to iterate on connectivity and allow for

dynamic expansion should requirements change. Although a

custom board implementation was worked on, the changing

specifications on pinouts and controllers delayed the

manufacturing of the custom version infeasible for the time

frame.

On the version shown, the FPGA was loaded with a

powerful AES core, with an embedded, pseudo-random,

erasable 256-bit key. This isolated the key used for encryption

and decryption of the program even from the RISC-V core

running the user program, granting an additional layer of

isolation. The software running on the SiFive board is a

minimal firmware used to load in machine binaries over a

UART port, decrypt over the SPI connected AES core,

execute the program, and re-encrypt the binary with any user

data changes to send back over the UART connection. This

implementation lacks many of the standard C libraries, or

ability to run higher level interpreters, as well as any support

for the proposed file system package format. The unit was able

to successfully load in, encrypt, decrypt, and execute a simple

test program effectively.

IV. CONCLUSION

The two demos created for this project show the feasibility

of creating a true secure system, capable of protecting the likes

of even the most sensitive populations. The largest limiting

factors in creating the true ideal system, are the maturity of the

RISC-V platform, which only hit v1.0 for its base instruction

set in 2017, and the time allotted for us to complete the

project.

 Further refinements in the firmware on the board would

allow more user functionality, identifying an open source

FPGA capable of holding the AES core, or a RISC-V core

with proposed security extension support, would allow

significant shrinkage of the system, and speed up general

execution. Moving to a higher speed interface between the

host and the AppVault would also be advantageous, but would

require more advanced USB controller integration.

REFERENCES

[1] Cvedetails.com. (2019). Browse cve vulnerabilities by date. [online]

Available at: https://www.cvedetails.com/browse-by-date.php [Accessed 22

Jul. 2019].

[2] N. Abu-Ghazaleh, D. Ponomarev and D. Evtyushkin, "How the spectre

and meltdown hacks really worked", IEEE Spectrum, vol. 56, no. 3, pp. 42-49,
2019. Available: 10.1109/mspec.2019.8651934.

